
1 
 

Corrected Momentum and Energy Equations 
Disprove Betz’s Limit 

 
 

Larry Mansberger 
Mansberger Aircraft Inc. 

758 Aviator Dr. 
 Fort Worth, Texas 76179 

 
 

Copyright © 2015 All Rights Reserved 
 
 

 
To this day, much of modern wind turbine design and optimization is based on 

actuator disc theory which uses an incorrect solution to the momentum equation to derive 
results that diverge from realistic airflow. This along with the incorrect use of Bernoulli’s 
equation to equate the pressure differential across the turbine to the loss in kinetic energy 
results in the implication of false limitations on the maximum theoretical power extraction 
from a wind turbine. This paper derives new solutions for the momentum and energy 
equations which align with natural observations and empirical data and mathematically 
disprove Betz’s Limit. A thermodynamic model including rotation of the wind turbine wake 
is developed based on equations for isentropic flow. The key to extracting more energy from 
the wind is shown to be accomplished by increasing the rotational parameters of the slipstream 
with the naturally occurring extraction of thermal energy. 
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Nomenclature 
 

A = area 
a = axial induction factor, a = (V1-V2)/ V1 
ai = inflow velocity ratio, ai = V2/ V1 = (1-a)  
B = number of blades 
b = axial slipstream factor, b = (V1-V6)/ V1 
bi = outflow velocity ratio, bi = V6/V1 = (1-b) 
cp = specific heat at constant pressure 
cv = specific heat at constant volume 
e = energy per unit mass 
h = enthalpy per unit mass 
K = ratio of change in enthalpy to ke 
k = specific heat ratio vp cc  
F = force 
ke = kinetic energy per unit mass  
M = momentum 
m  = mass flow VAm   
P = power  
p = pressure 
q = dynamic pressure q=ρV2/2 
R = maximum radius or gas constant in equation of state 
r = local or relative radius of blade element 
T = thrust or temperature 
V = velocity, with subscript defining location 
λ = tip speed ratio, λ = ΩR/V1,  λR may also be used 
λr = local speed ratio, λr = Ωr/V1 
λs = slipstream speed ratio, λs = ωr/V1 

λS = slipstream outer speed ratio , λS = ωR/V1 

 = density 
τ = torque 
Ω = angular velocity of turbine  
ω = angular velocity of slipstream 
 
Subscripts 
e = exit or energy per unit mass 
i = initial or inlet 
n = normal to turbine disc. 
r = with respect to an annular element located at radius r 
θ = with respect to the direction of rotation, tangentially 
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I. Introduction 
Modern wind turbine output has been increasing with the use of faster turning, larger diameter rotors on 

higher towers, all pushing the limits of practical manufacturing, transportation and construction. At the same time the 
potential of smaller distributed energy sources beckons for new and better solutions.  But in almost a century, little 
has changed within the Blade Element Momentum Theory used to design and optimize wind turbine configurations. 
This is due in part to assumptions, mistakes and misconceptions rooted in propeller and rotorcraft theory that have 
become ingrained into the historical basis of wind turbine design. To this day, Froude’s actuator disc concept with an 
incorrect solution to the momentum equation and misuse of Bernoulli’s equation is used to derive invalid limitations 
on wind turbine output. The goal of this paper is to challenge these current theories and correct the long held beliefs 
that are stifling innovation. 

This paper is written with the assumption that the readers are familiar with conventional wind turbine design 
theories and basic blade element analysis, if not I refer you to the excellent references1,2,3,4 listed at the end of this 
paper. Although it seems redundant to reproduce here many of the details of conventional theory as is so often done, 
I must do so in order to point out and correct the errors in the underlying assumptions and misconceptions.  
 

II. Misuse of 1-D Momentum and Bernoulli’s Equations 
 

I begin by redefining some terms and station positions for identifying the flow variables in the mathematical 
model. This numbering system varies from conventional numbering in order to more precisely describe the wake and 
regions near the turbine. Referring to Fig. 1 the airflow through the turbine is commonly represented as a stream tube. 
At this point we will make no commitment to the shape of this stream tube either upstream or downstream, 
understanding that this shape will be a result of the turbine design and conditions of operation. Station 1 represents 
the initial position of influence and station 6 the final position of influence. Stations 2 and 3 represent positions just 
forward and aft of the turbine respectively. Stations 4 and 5 are reserved for later discussion. Subscripts 0 and ∞ will 
be reserved for total and free stream conditions respectfully with V1 = V∞ .  

  
Figure 1 Station Positions 

 
Convention defines axial induction factor a as the ratio of induced flow velocity, the decrease in inflow 

velocity, over the free stream velocity or a = (V1-V2)/ V1.  In order to simplify future equations I will define a more 
convenient term, the inflow velocity ratio as ai = V2 / V1 = (1-a). Glauert1 also uses a term called the axial slipstream 
factor which for a wind turbine would be defined as b = (V1- V6)/ V1. I will similarly define outflow velocity ratio as 
bi = V6 /V1 = (1-b).  

Most conventional theories and versions of Blade Element Momentum method, BEM are in some manner 
based on the misuse of both simple one dimensional momentum theory and Bernoulli’s equation. The underlying and 
questionable assumptions for 1-D Momentum Theory are an ideal wind turbine modeled by a semi-permeable disc 
being acted on by a one dimensional ideal fluid flow which is inviscid (frictionless), incompressible and with no wake 
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rotation. If there is no wake rotation there is no power being extracted from the conventional turbine. Furthermore 1-
D momentum theory is usually used to evaluate internal pipe flow and is not necessarily relevant to free stream air 
flow as we shall see. But ignoring all this, the theory is still important in predicting the thrust and axial induction factor 
of the turbine if we properly correct for these poor assumptions.  

In its simplest form the momentum equation follows from Newton’s 2nd law that the sum of the forces acting 
on a body is equal to its change in momentum.  
 

 )()(
inout VVm

dt
mVdF     (1) 

 
In this case we are dealing not with a body but a control volume of air. Conventional theory uses one of two control 
volumes, these are shown here in Fig. 2 and Fig. 3 using the present nomenclature and station positions. 
 

 
 

Figure 2 Conventional CV I 
 
 

 
Figure 3 Conventional CV II 

 
The first control volume diagram Fig. 2 above, accounts for the flow both through the turbine and at some dimension 
external to it parallel with the freestream airflow. Therefore as the airflow is deflected around the turbine some mass 
flow and momentum must exit out the side of the control volume, which immediately contradicts the assumption of 
1-D flow. In the first derivation, the control volume diagram is given the following equation. 
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   TAVVmAAVAV cvsidecv  2
116

2
16

2
6      (2) 

 
The change in momentum out the side is assumed to be its mass flow times the velocity of the air stream V1.   
The conservation of mass is used to calculate the mass flow out the side as 

 
  616 VVAmside      (3) 
 
From here the thrust or drag on the turbine becomes 
 
    616166 VVmVVAVT       (4) 
 
The error in this solution is assuming the change in momentum out the side to be equal to its mass flow times the 
velocity of the air stream V1.  If the airflow is exiting the control volume as it approaches the turbine at varying stream 
tube diameters then at each elemental station a portion will exit at a different velocity.  In this case a different speed 
as well as direction or more correctly with a radial component, term rV  shown on Fig.2. This causes a change in 
momentum which when combined with shear forces in the velocity gradient must balance with the changing static 
pressure at each elemental x station.  The assumption that the change in momentum out the side is equal to its mass 
flow times the velocity of the air stream V1 is valid only if the x component of the flow is equal to V1 and the wake 
only expands and does not contract down wind. We know in free flow around a sphere the air at the perpendicular 
circumference will accelerate to 1.5V1 so there is no reason to believe Vx= V1. We also know from observing flow 
around normal obstructions that the fluid will flow around the obstacle and then back in behind it, so the assumption 
of wake expansion at station 6 could also be challenged which would invalidate the above solution. 

 
 In the alternative control volume Fig. 3 above, the flow is strictly considered only within the streamlines 
which pass through the turbine. The sum of forces must be integrated along the pressure distribution of the outer 
streamline surface.  This corrected control volume diagram yields 
 
   pressureFVVmT  61    (5) 

 
This equation is correct. But conventional theory compares Eq. (4) to Eq. (5) and concludes that Fpressure must equal 
zero. The correct conclusion should have been that the derivation of Eq. (4) is oversimplified and incorrect for the 
reasons mentioned.  Again, the airflow in Fig.2 exits the control volume at differing radial velocities as it approaches 
the turbine creating an external pressure distribution. This external pressure distribution along with the external shear 
forces must balance with varying static pressures within the enclosed streamlines of Fig.3.  The integration of these 
pressures will not be equal to zero but will equal some positive value resulting from a complicated nonlinear 
relationship acting on the control volume along the perimeter of the outer streamline. These calculations are currently 
beyond myself and this paper, although they should be considered significant enough to discount the validity of basic 
1-D momentum theory.  

The next step in conventional theory is to reconcile the results from this momentum equation with Bernoulli’s 
Equation. A further foundation for conventional theory is the misuse of Bernoulli’s equation to relate the pressure 
drop across the turbine to the energy extracted and change in kinetic energy far down stream. Even though Bernoulli’s 
equation is invalid across any device which changes the total energy of the flow, conventional theory incorrectly 
carries this out by comparing the equations up steam and down steam of the turbine as follows 
 

 Up Stream 2
22

2
11 2

1
2
1 VpVp       (6) 

 Down Stream 2
66

2
33 2

1
2
1 VpVp       (7) 

 
But these equations are invalid as written. We defined stations 1 and 6 as the limits of the turbines influence. The flow 
in these regions is not an internal pipe flow but is the result of the turbines influence and therefore Bernoulli’s Equation 
does not apply.  
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Conventional theory carries on regardless with Bernoulli’s Equation, assuming that the airflow is a constant 
density or incompressible and at constant temperature. Therefore since mass flow must be conserved across the turbine

23 VV  . If p is defined as 23 ppp   then ppp  23 . Furthermore it is assumed the final pressure far down 
stream equals the original static pressure  pp6 . Eq. (7) then becomes 

 

 2
6

2
22 2

1
2
1 VpVpp        (8) 

 
Solving Eq. (6) and Eq. (8) for p yields 
 

 
 2

1
2

62
1 VVp  

    (9) 
 
This result, Eq. (9) is an incorrect solution in contradiction to the energy equation. The energy extraction occurs 
between station 2 and 3, and pressure cannot change without a change in temperature which negates Bernoulli’s 
premise. We will come back to and elaborate on this later.  

The thrust or drag on the turbine is then assumed to be equal to this pressure drop times the area of the turbine 
and this is equated to Eq. (4). 
 

    61222
2

6
2

12
1 VVAVAVV     (10) 

 
Solving Eq. (10) for 2V  yields  

 
 612 2

1 VVV 
   (11) 

or in terms of velocity ratios 

 
 1

2
1

 ii ba
  (12) 

 
This is a fundamental and incorrect premise of conventional theory that the velocity through the turbine is equal to the 
average of the free stream and final velocity of the affected airflow. This is derived based on ignoring slipstream 
rotation and in conjunction with misuse of the linear momentum and Bernoulli’s equations.  

Continuing with the conventional solution, solving for ib yields 
 

 12  ii ab   (13) 
 

Conventional theory in Eq. (13) implies that if the inflow velocity ratio is one half of the free stream velocity then the 
final velocity will equal zero. This by conservation of mass flow implies an expansion of the wake to an infinite 
diameter at an inflow velocity ratio of 0.5, this would be a physical impossibility and is where the conventional solution 
to the momentum theory diverges from reality. This is an accepted limitation of the 1-D Momentum Theory that it is 
invalid as it approaches axial induction factors of 0.5. It is often said to be associated with the condition of a turbulent 
wake state. But within this derivation there is no condition predicting turbulent versus laminar flow around the turbine. 
There is also no reason for one to accept this solution as being anything but invalid over a greater range since we will 
see it does not resemble the empirical data.  

From here conventional theory calculates thrust and power coefficients based on the previous errors. Equation 
(11) is used to calculate V6 in terms of axial induction factor yielding 
 

 )21(16 aVV    (14) 
 

Thrust is calculated by entering Eq. (14) into Eq. (4) yielding 
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 2
2

1)1(2 AVaaT     (15) 
 

By definition thrust coefficient is calculated by dividing through by dynamic pressure and area, 2
2

12
1 AV  , yielding  

 

 )1(4 aaCT     (16) 
 

This relationship is graphed in Fig. 9. Notice that this result peaks at a = 0.5 and goes to zero as the axial induction 
factor goes to 1.0. This likewise does not occur in any empirical data. 

III. Betz Debunked 
 

Power in conventional theory is calculated either by the mass flow times the deficit in kinetic energy or from 
thrust times velocity, both conveniently resulting in a common solution when it is assumed that the pressure drop is 
related to the change in ke. Omitting the derivation and again using axial induction factor as the parameter the result 
is  

 

  22
3

1 12 aaAVP     (17) 

Calculating power coefficient by definition dividing through by 2
3

12
1 AV  leaves  

  214 aaCp    (18) 
 

Taking the derivative of this and setting equal to zero gives the result known as Betz’s limit which claims the maximum 
Cp attainable is 16/27 at an axial induction factor of 1/3. 

The next assumption that I believe was in error here is that power calculations are a function of FnV, thrust 
times velocity at the turbine disc. This is not a propeller and even if it was there is no direct connection mechanically 
or mathematically between this term and the power extracted term, P . The term FnV is the power which the 
turbine is causing to be transferred from kinetic energy to internal energy. The effect of thrust from the wind turbine 
is to reduce the momentum and increase the internal energy of the airflow; it is not directly tied to the energy extraction. 
I will cover this in depth when we get to the energy equation. 

In summary, as shown, the previously accepted results are based on an incorrect solution to the momentum 
equation and misuse of Bernoulli’s equation to solve an energy problem. The results are neither a law nor a valid limit 
and serve only to stifle innovation. In addition power extraction is not a result from the reduction in kinetic energy. If 
the conservation of mass flow requires that the velocity of airflow entering the turbine actuator disc equals the velocity 
exiting the turbine then the conventional explanation that the wind turbine extracts power from kinetic energy of the 
wind by slowing it down is incorrect. The energy transfer occurs at the turbine with an assumed negligible change in 
velocity. Therefore in fact kinetic energy at this point is the medium through which the energy is transferred, but the 
power in a rotating wind turbine is extracted from the differential pressure across the airfoil which is being converted 
to negative thrust and torque, but only the torque results in energy extraction. The reduction in kinetic energy 
downstream is a secondary effect of the natural flow balancing itself with the surroundings. The relevant energy 
equations must include the rotational terms and are invalid if temperature is ignored because the makeup of the internal 
energy of the flow is changing.   

IV. Corrected Momentum Equation 
 

So what does the corrected momentum equation look like? We must first start with an accurate control 
volume diagram that works regardless of any assumptions about wake expansion. Let’s start with a control volume 
Fig. 4 that assumes the streamlines flowing around the turbine and coming back together behind it. This is what we 
know usually occurs in natural disturbances to airflow. 
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Figure 4 MBET Momentum CV. 

 
In control volume diagram Fig. 4, I make no assumptions about the velocity or mass flow representing the change in 
momentum out the sides. At this point we will just call it netxM , . Summing the forces and equating to the change in 
momentum through the control volume gives us the following 
 
   (19) 

 
Simplifying we arrive at the corrected momentum equation of 
 
    (20) 

 
Although we don’t have a direct analytical solution for netxM , we can arrive at an estimated solution by deductive 
analysis. Examining the limits of the equation, we know that when 61 VV   the flow through the turbine must be 
unrestricted with zero change in momentum, zero thrust and therefore 0)(, 61

VVnetxM . When 06 V  then we have 
reached a state of total restriction through the turbine so all the mass flow and momentum must be flowing out around 
the front of turbine and back in behind the turbine. So what is the limit of the thrust and )0(, 6 VnetxM  for this condition? 
For turbulent wake states we can consider the turbine drag may be similar to the drag on a flat plate or disc. This is 
usually referred to in a non-dimension form as coefficient of drag DC or wind turbine convention likes to refer to it as 
coefficient of thrust TC  either way  

 
2

)(
qA

DorTCC DT    where   2
12

1 Vq    (21) 

 
Depending on the Reynolds number this value can vary from 1.2 to 1.8 for a turbulent wake. But for our limit we want 
to imagine maintaining the flow as laminar around the turbine. In this case the pressure on the front face of the turbine 
would be q  and on the back side q for a total drag force of 22 Aq or 2TC . So for 06 V  and 

2
2

122 AVqAT   the momentum equation becomes 
 
 )0(,

2
162

2
1 6 

 VnetxMVAAV    (22) 

Solving for )0(, 6VnetxM  

 )( 26
2

1)0(, 6
AAVM Vnetx     (23) 

 
If 06 V , then obviously 06 A  not ∞ and this equation gives us the result we expect. 22

2
1)0(, 2

6
qAAVM Vnetx   . 

Using the continuity equation (conservation of mass flow) 6622 AVAV   we can manipulate Eq. (23) to a final form of 
 

 







 12

6

2
2)0(, 6 V

VqAM Vnetx    (24) 

 6
2

1666,11 )()( AAVVAVMVAVT cvnetxcv  

  netxMVVAT ,
2

6
2

16  
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Looking back at our previous limit 0)(, 61

VVnetxM , the continuity equation also implies if there is no restriction to 
airflow then 621 VVV  . Inserting this into Eq. (24) coincidentally also equals zero. This might imply that Eq. (24) is 
a general equation approximated by the linear relationship shown in Fig. 5.  
 

 
 

Figure 5 Possible Mx,net Solutions 
 

In Fig. 5 various possible solutions are plotted. Increasing negative values of 62 VV and netxM , would be 
produced by a propeller brake state with energy being added to reversing the airflow through the turbine. The limit 
for the wind turbine state would be 062 VV . Reversed flow caused by negative values of 6V would produce the blue 
negative sloping line. This condition could only be produced in an open throat wind tunnel with flow coming from 
both directions, with mass flow and momentum flowing out of the control volume parallel to the turbine disc and 
when 126 VVV   then 0, netxM . The intersection of the lines would represent the condition where 061  AA , 
with no flow through the turbine and a theoretical laminar wake. Possible quadratic or cubic solutions are additionally 
shown in green and red. 

What if we now look at netxM , as a function of the non-dimensional V6/V1= bi. We know that if there is no 
restriction 621 VVV   then bi = 1 and 0, netxM . We also assume that if 06 V then bi = 0 and 2, 2 AqM netx  . Let’s 
further assume another point that if 16 V  which means 1ib  implying reverse flow in the wake as above, then 
again we have 0, netxM . These points all match the points plotted in Fig. (5) for V2/V6 . 

Admittedly we do not know that these are linear relationships, they could be quadratic, cubic or may be other 
differing relationships. But we do know based on the corrected momentum equation and within the range of the wind 
turbines flow parameters the relationship exists that 
 

 
















 1212

1

6
2

6

2
2, V

VqA
V
VqAM netx   (25) 

and observing from this 

 
1

6

6

2

V
V

V
V

   (26) 
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Rearranging terms yields 

 
2

1

6

1

2










V
V

V
V

 or  2
ii ba    (27) 

or more useful  
 ii ab    (28) 
 
Eq. (28) has profound implications for both the momentum and energy equations, changing the way we analyze the 
airflow in the wake of a wind turbine.  Fig.6 graphs the new result ii ab   compared with the conventional Eq.(13), 

12  ii ab  in terms of  a=1-ai. 

 
Figure 6 Relationships of bi vs. axial induction, a=1-ai   

 
 

Eq. (28) is the fundamental premise of Mansberger Blade element Theory, M-BET a design algorithm under 
development by the author. It should be obvious that )1( aab ii   is a much more realistic solution. The new 
formula does not break down at axial induction factors above 0.5. Note that conventional theory claims that ii ab  ; 
from conservation of mass flow the wake therefore would be expanding as the velocity in the wake is decreasing. M-
BET claims the opposite that ii ab   and the wake therefore must be contracting as its velocity is increasing. Which 
is correct? Natural observations would agree with the later. I also refer you to not one but two independent sources of 
empirical data from Doppler radar experiments, Fig. 7 and Fig. 8 from Ref. 7 and Ref. 8 respectfully. The data collected 
and presented in these papers is truly enlightening. Both sources clearly show that after the initial decrease in velocity 
through the turbine the velocity increases downwind.  Figure 7 clearly shows cross sections of the contracting wake 
with increasing velocity. Figure 8 graphically depicts the velocity deficit. From figure 8 we can approximate ia  equal 
to 1 minus the velocity deficit at the turbine or 1-0.36 = 0.64. Similarly ib = 1 minus the downstream final velocity 
deficit or 1-0.18 = 0.82. Inserting into Eq. (28) and comparing ii ab  , 80.064.0 ib , which is amazingly close 
and supports the new theory. 
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Figure 7 Doppler Radar Data; Hirth B.D. and Schroder J.L.5 

Clearly Depicted Contracting Wake Diameter and Increasing Velocity 
 

 

 
 

Figure 8 Doppler Radar Data; Kasler, Y., Rahm, S. and Simmet, R.6 

Decreasing Velocity Deficit Implies Decreasing Wake Diameter and Increasing Velocity 
 
 

 Continuing with the new theory, we can now take our deductive solution Eq. (24) and insert back into Eq. 
(20) giving us the corrected momentum equation, 

   







 1

1

6
2

2
1

2
6

2
16 V

VAVVVAT    (29) 

Dividing through be 2qA  we arrive at the non-dimensional  
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
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






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













 112

1

6
2

1

2
6

2

6

V
V

V
V

A
ACT   (30) 
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From the continuity equation 6622 AVAV   therefore
i

i

b
a

V
V

A
A


6

2

2

6 and with 2
1
ii ab   we insert all into Eq. (30) 

arriving at what I like to call the laminar wake momentum equation. 
 

  





  2

3
12 iT aC    (31) 

 
There is additional empirical support for the validity of the laminar wake momentum Eq. (31). Glauert and 

others, collected and corrected early NACA and BARC wind tunnel data to arrive at the graph I believe was originally 
depicted by Eggleston and Stoddard4 in 1987. A version of that graph appears as Fig. (9).  

 
Figure 9 Axial Induction Factor vs. CT for Empirical Data 

 
 
Figure 9 clearly shows a far superior fit of the data by the laminar wake momentum equation then by any other historic 
alternative.  Empirical and other new formulas such as the recent technical report by the National Renewable Energy 
Lab7 fail to properly correct the relationship between ai and bi. Most importantly the Laminar Wake Equation is based 
on this new relationship and shows great accuracy with the data. Error in some of the data fit may be due to data 
interpretation, wind tunnel effects or an actual turbulent wake state increasing turbine back pressure shifting results 
the right. 

Continuing with the development of the new theory we solve Eq. (31) for inflow velocity ratio  
 

   3
22 5.01 Tii Cba    (32) 

 
Equation (32) defines the important inflow velocity ratio )1( aai  the inverse of the axial induction factor in 
terms of both the final velocity and the thrust coefficient. With this new relationship we can return to the energy 
equation.  
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V. The Correct Energy Equation 
 

Now let’s look at the true and correct energy equation. It is undisputed in any fluid or thermo-dynamic 
textbook that if the flow between two regions contains a mechanical device such as a propeller or a wind turbine, 
Bernoulli’s equation is not valid. I found no exceptions to this. Obviously this applies between stations 2-3. As 
previously stated we also can’t analyze between stations 1-2 or 3-6 independently of 2-3 using Bernoulli’s equation 
in the currently accepted manner. Why? Because the most significant term in the energy equation is the internal energy 
related to T  the change in temperature. (Note from here on out the variable T will be used exclusively for temperature 
and for thrust I will use Fn the force normal to the turbine.) Conventional theory ignores T by assuming temperature 
before and after the turbine is the same and that the only transfer of energy is from pressure energy independent of 
temperature. But the true energy equation does not allow the pressure to change independent of temperature. 

There are many forms of the general energy equation for dealing with flow through a turbine. For an ideal 
gas ignoring rotation, the simplest form of the energy equation is  

 

 outpp eVTcVTc  2
33

2
22 2

1
2
1   (33) 

 
The term cp is the specific heat of the fluid at constant temperature. The value of this term for air is often sited at 0.240 
Btu/lb°R. This needs to be converted to ft2/s2°R for consistent units in the above equation. The conversion is 
approximately 1 Btu/lb°R = 25,037 ft2/s2°R ,therefore the cp constant at 77°F works out to be equal to approximately 
6008. This gives one an idea of the significance of the internal energy of the system versus the kinetic energy. Further 
notice that according to Eq. (33) if we extract energy from the flow then the velocity cannot remain constant across 
the turbine without a temperature drop.  

For an ideal gas ܿ௣ܶ can be considered equal to enthalpy h, which is tied to pressure and temperature in the 
following equation 

 TcphTc vp 


  (34) 

 
where cv also must be converted from its commonly used 0.171 Btu/lb°R to approximately 4,291 ft2/s2°R. Equation 
(34) into Eq. (33) yields 
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The above again demonstrates the thermal energy potential in the air flow. 

The enthalpy relationship between temperature and pressure can be related by the ideal gas equation of state 
formula TRp  , where R in this case is the gas constant for air equal to 1716.51 ft2/s2/°R. Furthermore the 
relationships between specific heats and the gas constant are related by the following relationships:   
 

  vp ccR   and 
v

p
c

ck   ,where k = 1.4 for air.  (36) 

 
Using the above, the energy equation between stations 1-6 can be manipulated to look like this,  
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  (37) 

 
If Eq. (6) and Eq. (7) were in this form a corrected solution for p , CT, and Cp might result, but as can be seen the 
result is dependent on a change in density and temperature with no straight forward solution, at least not without 
considering the thermodynamics. 

So let’s refocus right now on the basic energy equation between stations 1-6 and see what we can deduce. 
This equation similar to Eq. (33) appears as 
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therefore 

    2
6

2
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This is energy per unit mass, in order to solve for power out we multiply by mass flow and rearrange terms, 
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Dividing through by 2
3

112
1 AV  , with 21   and still governed by the momentum equation result from  Eq. (28) 

ii ab 2  will give us the dimensionless power coefficient, 
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Let us now define the ratio in the change in enthalpy to kinetic energy available as K  
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Inserting Eq. (42) into Eq. (41) yields 
 
 2)1( ii aaKCp    (43) 
 
Equation (43) is the corrected version of Eq. (18) which Betz used to derive his supposed limit. If we take the derivative 
with respect to ai, set equal to zero and solve  
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  (44) 
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This solution implies the only limiting factor to our power extraction is K, our change in enthalpy relationship. If we 
make the conventional assumption that the temperature is constant then K=0 which implies 2

ii aaCp  . Taking the 
derivative of this, setting equal to zero and solving we get a maximum Cp of 0.25 at an inflow velocity ratio and or 
axial induction factor in this case of 0.5. This is far below Betz’s supposed limit and occurring at the velocity ratio 
where conventional theory breaks down. But this is considering the kinetic energy contribution only.  

I am not the first to suggest that the kinetic energy contribution could be this low. See references (8) A 
Modified Form of the Betz’ Wind Turbine Theory Including Losses A. Dyment 1989, (9) Reformulation of the 
Momentum Theory Applied to Wind Turbines by Ricardo Prado 1995 and (10) Limits of the Turbine Efficiency for 
Free Fluid Flow by Gorbon, Gorlov and Silantyev 2001. These papers independently use revised models of the flow 
field along with more advanced mathematics to derive maximum power coefficients of closer to 0.30 and less. The 
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results of these papers have apparently been ignored, probably because we know that modern 3 blade wind turbines 
can achieve power coefficients exceeding 0.45. In retrospect it may become apparent that the fore mentioned authors’ 
results were more correct than the original momentum equation solution when the corrected energy equation is realized. 

In order to better understand this, let’s assume that a hypothetical wind turbine with a Cp = 0.40 is operating 
at a supposed optimum design axial induction of 1/3 (inflow velocity ratio of 2/3). We can solve for the theoretical

T  that would be required for the additional performance. Solving Eq. (41) for T  
 

  iiP
ip

aaC
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2

1

2
  (47) 

 
Choosing Cp = 0.40, cp = 6011, 67.0ia and an example wind speed of 30ft/s or roughly 20.5 mph, 

 

  FT 02.067.067.040.0
)67.0)(6011(2

30 2
2

  

 
In other words it only takes a temperature drop of 0.02°F from the enthalpy term to shift the power coefficient from 
less than 25% to 40%. If we graph Eq. (43) in the figure below, we can see that the ai-Cp plane or the result of kinetic 
energy only, is not representative of the turbine limit but merely the turbine kinetic energy baseline curve.  

 
Figure 10 Graph of Cp Equation (43) 

 
 

So we must ask, by what means is this temperature drop and resulting increase in performance accomplished 
and controlled? In order to understand, we must now put rotational terms into the energy equation. As currently 
presented the energy equation is still not correct without the critical rotational terms. The power extracted by the wind 
turbine is equal to 
                                                                                     P                                                                              (48) 

 
The torque applied to the wind turbine must be equal and opposite of the subsequent torque reacting with the slipstream. 
The rotation or angular velocity of the slipstream however can and will be different from that of the turbine blades. 
Therefore we will carefully distinguish between Ω defined as the angular velocity of the turbine from ω, the angular 

Cp 
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velocity of the slipstream or an annular element of the slipstream. The rotational kinetic energy per unit mass of air 
contained in an annular element of the slipstream is equal to  
 

                                                                                  22

2
1 rke r                                                                              (49) 

 
where r is equal to the radial position of the element versus R, which is reserved for the maximum radius of the turbine. 
The equation for the power output of the wind turbine is derived from Euler’s turbine equation which looks like  
 

eeeii rVmVrVrmP ,,, )(     (50) 
 

where Vθ represents the tangential velocity in the direction of rotation which at our turbine inlet is assumed to be zero. 
At the exit of an annular element Vθ will be equal to ωr. Mass flow, m  is equal to ρVA, ρ the density of the air, 
V=V2=aiV1 the velocity of the air through the turbine. For the power contained in an infinitesimal annular element, A 
is the area equal to 2πrdr at the turbine. We can now put the elemental power equation in the following form  
 

     drrVadP i
3

12    (51) 
 

We can derive the rotational energy extracted term by dividing Eq. (51) by VAm  the mass flow through 
the annular element, this yields the energy extracted per unit mass which now appears in terms of the rotational 
parameters 
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We can now insert Eq. (49) and Eq. (52) into the basic energy equation yielding 
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Equation (53) is the corrected energy equation which is relevant for the design of any horizontal axis wind turbine 
which extracts energy through rotation. Rearranging and solving for T  
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  (54) 

 
This answers the earlier question, how do we induce the temperature drop and increase the performance of the turbine. 
Equation (54) shows the temperature drop must be a function of the rotational parameters alone. As can be seen 
decreasing the velocity from station 1 to 6 will actually increase the temperature. This therefore implies the 
performance enhancement of the turbine must come from increasing the rotational term 2

33r .  
 

VI. The Thermodynamic Wind Turbine Model 
 
 This theory as with most, assumes a laminar wake unaffected by viscous outer layer or turbulent mixing. In 
addition it assumes that enough blades are present and rotating at a sufficient velocity that the normal force generated 
by the turbine blades is distributed evenly throughout the turbine disc area as a pressure distribution. We have corrected 
both the momentum equation and the energy equation. This basic wake model is drawn based on observations of 
naturally occurring flow around obstructions and in agreement with the new momentum equation. For the purpose of 
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better understanding the thermodynamics of the airflow through the turbine, let’s examine a realistic hypothetical case 
study for a micro-wind turbine. We will give it the following parameters and conditions; 
 

Diameter 6 ft., R = 3 ft V∞ = 30 ft/s 
Area = 28.27 ft2  p∞ = 2116.2 lb/ft2 

Cp = 0.40   ∞ = 0.002378 slug/ft3 
a=1/3, ai=2/3  λR = 6 

  
I apologize for carrying out this paper and case study in the English system of units; I will revise it to the metric system 
as soon as time allows. 

We will not be using any form of Bernoulli’s equation; we will use only the true energy equation, the equation 
of state ݌ =  and where appropriate the thermodynamic equations for isentropic flow found in any fluid or ܴܶߩ
thermo-dynamic text as, 
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As noted before, very small changes in temperature, hundredths of a degree can have significant effects on the energy 
equation. Therefore it is essential to carry as many decimals places as possible throughout the calculations and to use 
correct gas and specific heat constants that obey the relationships in Eq. (36). The following values were found to give 
reasonable results, 
 

cp = 6007.79 ft2/s2  R = (cp - cv) = 1716.51 ft2/s2 

cv = 4291.28 ft2/s2  k = cp / cv = 1.40000 
 

In practice knowing the temperature and pressure, the equation of state would be used to calculate the density. To start 
the case study the equation of state formula is first used to make sure our initial temperature coincides with our 
constants. 

R
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pT  440.518
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A. Free Spinning Turbine 

 
I stated earlier that the thrust or normal force on the turbine times velocity FnV was not directly associated 

with power extraction but instead results in a shift in internal energy or enthalpy. I would like to demonstrate this by 
first analyzing the sample turbine, free spinning with no energy extraction. The total energy in the flow stream is often 
referred to by the stagnation enthalpy  

 22
0 2

1
2
1 VTcpVTch vp 


  (56) 

 
If no energy is extracted this value must remain constant, either way it can be used to solve for other parameters and 
cross check values with it along the turbine stations. Station 1 is self-explanatory with the given values: 
 

T1 = 518.440°R 
p1 = 2116.20 lb/ft2 

1 = 0.002378 slug/ft3 

V1 = 30 ft/s 
h01 = 3115128.6 ft2/s2 

 
Given the axial induction factor of 1/3, or inflow velocity ratio of 2/3, the velocity at station 2 has been defined as V2 

= ai V1 = 20 ft/s. Knowing h0 must remain constant we can use Eq. (56) to solve for T2 and use Eq. (55) to solve for 
the rest of the parameters.  
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T2 = 518.482°R 
p2 = 2116.7944 lb/ft2 

2 = 0.00237848 slug/ft3 

V2 = 20.00 ft/s 
h02 = 3115128.6 ft2/s2 

 
Next, using the laminar wake Eq. (31) we calculate the thrust coefficient. 
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The thrust coefficient can be directly correlated to the both the normal force acting on the turbine and the pressure 
drop between station 2-3 with the following 
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Therefore 

 TqCp  3,2  where 2
12

1 Vq    (58) 

For this case  
0701.1)30)(002378.0(5.0 2 q  lb/ft2 

and 
975222.0)911338.0)(0701.1(3,2  p  lb/ft2 

 
We now have all the information we need to calculate the station 3 parameters. Based on the conservation of mass 
flow VAm   is constant through the turbine. We can make the assumption that V2 ≈ V3 if the change in density is 
very small and confirm it later. So in order to balance with the momentum equation we know 3,223 ppp  = 
2116.2-0.97522= 2115.819 lb/ft2. In this first analysis we are assuming no power is extracted therefore T2 = T3, and 
3 can be calculated from the equation of state: 
 

Free Spinning 
T3 = 518.4816°R 
p3 = 2115.8192 lb/ft2 

3 = 0.00237738 slug/ft3 

V3 = 20.00 ft/s 
h03 = 3115128.6 ft2/s2 

 
Confirming reasonableness, the mass flow, 222 AVm  = 1.34478 slug/s. If we solve for V3 = )( 23 Am  = 20.009 
ft/s, and insert it back in the total energy equation we confirm V2 ≈ V3 and T2 ≈ T3 within 0.0001 degree, insignificant 
to iterate for more accuracy. 

The procedure for solving station 6 is a simple matter of calculating V6 based on the outflow ratio derived 
from the momentum equation, V6 = biV1 = 1Vai  = 24.4949ft/s. Now plugging V6 into the total energy Eq. (56) one 
can solve for T6. Final pressure p6 is assumed to be back to atmospheric and final density is calculated from the equation 
of state.  
 

Free Spinning 
T6 = 518.4650°R 
P6 = 2116.2 lb/ft2 

6 = 0.00237789 slug/ft3 

V6 = 24.4949 ft/s 
h06 = 3115128.6 ft2/s2 
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Notice the final temperature is 0.025°F higher. Because no energy was extracted this is the resulting shift from kinetic 
to internal energy caused by FnV, thrust times velocity, demonstrating, FnV is in not associated with power extraction 
other than to deter mass flow. 

I use the isentropic relations to work backwards from station 6 to the previous station with the same diameter 
as A2 and velocity ≈ V2 and called this station 5. Because the velocity is the same T5 = T3 and rearranging the isentropic 
equations 

438.2116

482.518
465.518

2.2116
5.35.3

5

6

6
5 





















T
T

pp  

 
Density is again calculated from the equation of state and all the parameters for station 5 are known. 
 

Free Spinning 
T5 = 518.4816°R 
P5 = 2116.4377 lb/ft2 

5 = 0.00237808 slug/ft3 

V5 = 20.00 ft/s 
h05 = 3115128.6 ft2/s2 

 
Note that although temperature and velocity are the same for stations 3 and 5, pressure and density are not 

and there is not an isentropic solution from stations 2 to 5 or for any of the stations in between. This region of flow 
from station 2-5 does not flow in accordance with the isentropic equations, but must still obey the energy and 
momentum equations. It was strictly energy and momentum equations that solved for station 3. The difference in 
pressure between 3 and 5 must be reconciled by nature with a change in momentum and area at station 4. This is 
similar to the reduction in area of a fluid jet as it exits a pressurized reservoir or in this case exits the influence of the 
turbine. The pressure must increase from p3 to p5 passing through p∞ . The velocity must slow to a minimum and then 
start increasing steadily to V6 . This can conveniently occur if the area expands to a maximum at station 4 coincident 
with minimum velocity V4 and p∞ atmospheric pressure. 

 I define station 4 as the region of minimum velocity and maximum wake diameter. To solve for station 4 
refer to the two control volume diagrams in Figure 11. 

 

 
Figure 11 Non Isentropic Wake Region 

 
Assuming the angle of flow to be small and symmetrical on both sides of station 4, then the sum of the forces around 
each CV diagram must be approximately equal to the change in momentum which yields the following two equations 
 
 )()( 34443433 VVmApAApAp       (59) 
 )()( 45545544 VVmAApApAp       (60) 
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Assuming p4 = p∞, and by the definition of station 5 we have A3 = A5 = A2 and as well  
V3 ≈ V5 ≈ V2 , then these equations can be simplified to 
 
 )( 24223 VVmApAp       (61) 
 )( 42252 VVmApAp     (62) 
 
Now subtracting the bottom equation from the top and solving for V4 yields 
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This equation (63) reconciles the momentum and energy equations between stations 3-5 and determines the parameters 
at station 4. Entering values 
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This continued reduction in velocity after leaving the turbine is due to both the continued influence of the turbine as 
well as the radial momentum of the mass flow. The later may not be adequately accounted for in this theory and the 
pressure may rebound above p∞, but Eq.(63) does give us agreement with the characteristic flow. Conservation of 
mass flow requires an increase in the wake diameter to a maximum at this point. Note, this is only a temporary 
expansion and is observed in the Doppler radar data graph of Fig. 8.  

Continuing with the station 4 solutions, plugging V4 into the total energy equation one can solve for T4. Final 
pressure p4 is assumed to be passing through atmospheric p∞ and final density is calculated from the equation of state. 
 

Free Spinning 
T4 = 518.4864°R 
P4 = 2116.20 lb/ft2 

4 = 0.00237779 slug/ft3 

V4 = 18.50 ft/s 
h04 = 3115128.6 ft2/s2 

 
B. Energy Extraction 

 
That completes the solutions for the free spinning turbine. We will now solve for the case with energy being 

extracted. Solutions for stations 1 and 2 will be identical to those for the free spinning case. Now let’s look in depth 
at the nature of the energy being extracted between stations 2-3. Again I choose a realistic hypothetical Cp = 0.40 and 
λR = 6. By definition of Cp we know the average energy extracted per unit mass flow  
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We now need an equation which relates eout and Cp with λR and λS for a given overall power output. If we integrate 
either Eq.(51) or (52) from 0 to the outer radius R we arrive at 
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Inserting results from Eq. (65) into Eq. (64) yields 
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We can now examine the relationship between λR and λS for these conditions 
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or in terms of radial velocity 
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Note the turbine blades are spinning 60 times faster that the rotating slipstream.  

We need the above information so we can calculate the rotational kinetic energy per unit mass flow exiting 
the turbine. This can be derived by integrating Eq. (49) from 0 to R and dividing by total mass flow or by considering 
the rotational kinetic energy in a solid cylinder of mass flow, either way yielding  
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and for our case study 
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Interesting note; comparing this to the rotational energy extracted (2.25/270) = 0.84%, or 1/120th, which implies very 
little inefficiency at this point in the rotating air mass. A much larger inefficiency occurs in Tcp  = (6007.79)(0.025) 
= 150 ft2/s2 a 56% loss which went into heating the air mass.  

We now have the necessary information for the station 3 energy equation with rotational parameters included,  
 

 2222
3302 4

1
2
1

2
1 RRVTch p     (68) 

 
Rearranging to solve for T3 
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Inserting our known values with V2 ≈ V3 
 

4363.518
79.6007

25.2270)20(5.06.3115128 2

3 


T  °R 

 
Now that we have extracted energy, 0302 hh  , but outehh  0203  

 
6.31148582706.311512803 h  ft2/s2 

 
So the temperature and stagnation enthalpy were determined from the energy equation but the pressure p3 must still 
be in balance with the momentum equation. Since we are still assuming the same axial induction factor and thrust 
coefficient then 3p  must still equal 3,22 pp   which equals 2115.819 lb/ft2. The density is determined from the 
equation of state fully defining station 3. 
 

Energy Extracted   Free Spinning  
T3 = 518.4363°R  T3 = 518.4816°R 
p3 = 2115.8192 lb/ft2  p3 = 2115.8192 lb/ft2 

3 = 0.00237759 slug/ft3 3 = 0.00237738 slug/ft3 

V3 = 20.00 ft/s  V3 = 20.00 ft/s 
h03 = 3114858.6 ft2/s2  h03 = 3115128.6 ft2/s2 

 
Note in this case we now have a temporary drop in temperature at the turbine of 0.045°F. 

The procedure for solving for T6 is as before using V6 from the momentum equation in the new total energy 
equation or 
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Inserting values into Eq. (77) yields 
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Again final pressure p6 is assumed to be back to atmospheric and final density is calculated from the equation of state.  
 

Energy Extracted   Free Spinning 
T6 = 518.4196°R  T6 = 518.4650°R 
p6 = 2116.2 lb/ft2  p6 = 2116.2 lb/ft2 

6 = 0.00237809 slug/ft3 6 = 0.00237789 slug/ft3 

V6 = 24.4949 ft/s  V6 = 24.4949 ft/s 
h06 = 3114858.6 ft2/s2  h06 = 3115128.6 ft2/s2 

 
Now with energy extracted we have our previously estimated net temperature drop of 0.02°F 

Notice that in this analysis of station 6, I do not distinguish a difference between 3 or 6,5,4 . An attempt 
could be made to analyze this difference based on either a balance in pressure with centrifugal forces or conservation 
of angular momentum and to account for the effect of the theoretical wake diameter on one or the other. But we have 
succeeded in this theory on estimating the value of 3  as being very small and assume any change downwind in 
rotational kinetic energy to be insignificant in calculating the slipstream parameters and not to have an effect on overall 
performance in this case. As rotational kinetic energy is increased in new designs this assumption may have to be 
reevaluated. 

Continuing our analysis with station 5 we again solve by working backwards with the isentropic relationships 
with V5 = V3 and T5 = T3.  
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Energy Extracted  Free Spinning 
T5 = 518.4363°R  T5 = 518.4816°R 
P5 = 2116.4386 lb/ft2  p5 = 2116.4377 lb/ft2 

5 = 0.00237829 slug/ft3 5 = 0.00237808slug/ft3 

V5 = 20.00 ft/s   V5 = 20.00 ft/s 
h05 = 3114858.6 ft2/s2   h05 = 3115128.6 ft2/s2 

 
We start the station 4 solution with Eq. (63) inserting new values 
 

  5.1820
)3445.1(2

27.28)2.2116(24386.21168192.2115
4 


V  ft/s 

 
The difference in V4 between the free spinning versus energy extracting case is noted as insignificant. We can calculate 
T4 in the same manner as T6, p4 = p∞, and density is calculated with the equation of state. 
 

Energy Extracted  Free Spinning 
T4 = 518.4411°R   T4 = 518.4864°R 
P4 = 2116.20 lb/ft2  p4 = 2116.2 lb/ft2 

4 = 0.00237800 slug/ft3 4 = 0.00237779 slug/ft3 

V4 = 18.5 ft/s   V4 = 18.5 ft/s 
h04 = 3114858.6 ft2/s2  h04 = 3115128.6 ft2/s2 

 
 

This completes the analysis of the thermodynamic wind turbine model. Summarizing, it was done in two 
cases, free spinning and energy extracting to demonstrate that the thrust force alone determines the turbine wake 
profile and does not contribute to energy extracted. It is shown that a free spinning turbine with a thrust coefficient  
CT = 0.91 is raising the air temperature by 0.025°F while a similar turbine with the same CT but extracting power with 
CP = 0.40 is lowering the temperature by 0.020°F. Implied by this is that turbines operating inefficiently are potentially 
raising atmospheric temperatures while properly designed efficient wind turbines are actually lower atmospheric 
temperatures aiding in our fight with global warming. Also a theoretical difference in the near wake and far wake 
regions is identified. The far wake, like the forward region of turbine influence obeys the isentropic relationships. The 
near wake is identified as a region of non-isentropic flow. The thermodynamic properties are determined from both 
the change in momentum due to the thrust and the rotational energy extracted from and imparted into the slipstream. 
The resulting parameters for the energy extracting case are graphed in the following Fig. 12.  
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Figure 12 Station Thermodynamic Parameters 
 
 
 
 

VII. Conclusion 
 

This paper has challenged the original derivation of the momentum equation used in wind turbine actuator 
disc theory along with the energy equation used and the previously mistaken limitations implied by Albert Betz.  An 
alternative solution for the momentum equation has been derived with the fundamental new result that

  3
22 5.01 Tii Cba   and is called the Laminar Wake Momentum Equation. The conventional energy equation for 

a wind turbine is corrected to include thermodynamic and rotational terms. A mathematical model is presented for a 
thermodynamically active wind turbine which shows the naturally occurring extraction of thermal energy from any 
efficiently operated wind turbine.  
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